BRIEF COMMUNICATIONS

Préparation chimique et propriétés optiques de CeP₅O₁₄ triclinique

MOHAMED RZAIGUI ET NÉJIA KBIR ARIGUIB

Laboratoire de Physico-Chimie Minérale, 43, rue de la liberté le Bardo, Tunis, Tunisie

Received April 23, 1984; in revised form July 9, 1984

Crystals of a new cerium(III)-ultraphosphate form, CeP₃O₁₄, have been grown from CeCl₃ \cdot 7H₂O and NH₄H₂PO₄. Synthesis and structural characterization by X-ray diffraction and ir absorption spectroscopy are given. The new CeP₃O₁₄ crystallizes in a triclinic unit cell, P1, with parameters: a = 9.229(2), b = 8.879(1), c = 7.201(1) (Å), $\alpha = 110.27(1)$, $\beta = 102.75(1)$, $\gamma = 82.13(1)^\circ$, Z = 2, and $D_x = 3.20$. This compound is piezoelectric and has no known structural analog. The excitation and emission spectrum of this Ce-ultraphosphate variety are reported. This material emits strongly in the near-uv. The emission band peaks at 322 nm and decays, at first, with $\tau_1 = 14$ nsec, then, with $\tau_2 = 60$ nsec. © 1985 Academic Press, Inc.

Introduction

Les ultraphosphates de terres rares ont été excéssivement étudiés ces dèrnières années, après avoir constaté que le sel de néodyme NdP₅O₁₄ présente des propriétés Laser remarquables. Les travaux que nous avons entrepris sur les phosphates condensés, dans le but d'élaborer de nouveaux matériaux de lanthanides (Lasers stoeuchiométriques, luminophores ultrarapides, etc.) nous ont permis d'identifier une nouvelle forme cristalline d'ultraphosphate de cérium. Cette forme présente des caractéristiques structurales distinctes de celles des trois variétés cristallines connues d'ultraphosphates LnP_5O_{14} (1, 2). Dans cette contribution nous donnons la préparation chimique et les principales caractéristiques cristallographiques et spectroscopiques de cette forme d'ultraphosphate CeP5O14.

Partie Experimentale

Les ultraphosphates de terres rares peuvent être préparés de plusieurs façons (3-6). A partir d'orthophosphates d'ammonium et de sels de lanthanides, nous avons préparé les ultraphosphates CeP₅O₁₄, DyP₅O₁₄, et ErP₅O₁₄. Les produits de départ, les quantités et les conditions expérimentales sont indiqués, pour des mélanges typiques, dans le Tableau I.

On mélange intimement les produits de départ dans un rapport molaire 15 < P/Ln < 30; on chauffe le mélange dans un creuset de carbone vitreux à 200°C pendant 2 hr. On élève, ensuite, lentement la température à une valeur entre 300 et 500°C selon le cas (Tableau I).

Apres un temps suffisant de chauffe, on arrête le four et on laisse refroidir lentement. On lave le produit obtenu à l'eau chaude pour dissoudre le flux phosphorique

	Réactifs								
Composés	(NH ₄) ₂ HPO ₄ (g)	CeCl ₃ · 7H ₂ O (g)	Dy ₂ O ₃ (g)	Er ₂ O ₃ (g)	T de chauffe (°C)	Durée de chauffe (hr)			
$CeP_5O_{14} (IV)$ $CeP_5O_{14} (I)$	2.8	0.38	_	_	340 400	15 48			
$DyP_{5}O_{14}$ (II)	2.02	_	0.17		450	30			
ErP_5O_{14} (III)	2.02	_		0.18	450	30			

TABLEAU I Préparation des ultraphosphates LnP_5O_{14} : Réactifs et conditions éxpérimentale

et récupérer les cristaux d'ultraphosphate.

Le spectre de diffraction des rayons X est effectué, à vitesse lente ($\frac{1}{8}^{\circ}0/\min$), à l'aide d'un diffractomètre Philips Norelco utilisant la longueur d'onde $K\bar{\alpha}$ du cuivre. Les parametres de maille ont été déterminés sur un monocristal et affinés par la méthode de moindres carrés, à partir de données angulaires relevées sur un diagramme de poudre.

Les spectres d'absorption ir sont enregistrés à l'aide d'un spectrophotomètre Perkin-Elmer IR-580 sur des échantillons en poudre dans CsI.

FIG. 1. Spectres d'absorption ir des Quatre Variétés structurales de LnP_5O_{14} : (a) CeP $_5O_{14}$ (I), (b) CeP $_5O_{14}$ (IV), (c) DyP $_5O_{14}$ (II), (d) ErP $_5O_{14}$ (III).

Les spectres d'excitation et d'émission ont été relevés à 27°C. Le spectrophotometre utilisé pour enregistrer les spectres d'émission est un Jobin Yvon UR 100. Les spectres d'excitation ont été effectués à l'aide d'un Cary 17 à double faisceaux.

La mesure de durée de vie est basée sur une méthode qui consiste à observer sur un oscilloscope l'évolution de l'intensité de fluorescence en fonction du temps, après excitation sélective pulsée. L'appareillage de mesure que nous avons utilisé aété décrit par ailleurs (7).

Résultats et discussion

La littérature rapporte, à présent, la préparation de trois formes d'ultraphosphates de lanthanides, LnP_5O_{14} , dénotées I, II, et III (8). La méthode de préparation que nous avons utilisée nous a permis d'obtenir, en plus de celles-ci, une quatrième forme correspondant à la même formule chimique, CeP₅O₁₄ (IV).

L'étude par spectroscopie d'absorption ir (Fig. 1) et diffraction des rayons X (Tableaux II et III) des ultraphosphates préparés ici CeP_5O_{14} , DyP_5O_{14} , et ErP_5O_{14} montre que ces sels présentent des structures differentes.

 CeP_5O_{14} cristallise dans deux variétés cristallines, une monoclinique isotype de NdP₅O₁₄ (9) et une triclinique dont nous

TABLEAU II Dépouillement d'un diffractogramme de CeP₃O₁₄ (triclinic)

h k l	d_{cal}	$d_{\rm obs}$	I_{obs}	h k l	$d_{\rm cal}$	$d_{\rm obs}$	Iobs
011	6.29	6.29	4	031	2.919	2.919	8
101	5.89	5.89	5	122	2.776	2.776	100
101	4.92	3.92	9	112	2.766	2.766	50
011	4.52	4.52	9	23Ī	2.637	2.636	6
200	4.49	4.49	10	032	2.583	2.583	- 9
$0\overline{2}0$	4.16	4.16	19	320	2.356	2.356	7
$21\overline{1}$	4.12	4.12	21	123	2.350	2.350	5
$2\bar{1}0$	3.846	3.846	8	321	2.248		
121	3.556	3.556	8	<u>1</u> 03	2.247	2.248	5
$22\bar{1}$	3.393	3.393	5	400	ل 2.245		
102	3.320)	2 210		$\overline{3}$ 2 1	ר 2.194		
002	3.318	5.519	13	332	2.193	2.194	5
$0\bar{2}2$	3.142	3,142	8	312	2.191 J		
112	3.039	3.040	6				
$\frac{1}{3}$ 0 1 1 0 2	2.942 2.939	2.940	10				

avons décrit la structure par ailleurs (10). La forme triclinique est non centrosymétrique; elle montre un signal intense de piézoélectricité qui pourrait être efficacement exploité dans certaines applications.

 DyP_5O_{14} et ErP_5O_{14} sont respectivement isotypes de YbP_5O_{14} (11) et HoP_5O_{14} (2).

La luminescence de la variété monoclinique de CeP₅O₁₄ (I) a été étudiée par ailleurs (2, 12). Nous comparons ici les résultats que nous avons déterminés, dans les mêmes conditions, pour les deux formes cristallines CeP₅O₁₄ (I) et CeP₅O₁₄ (IV).

La Fig. 2 montre les spectres d'émission et d'excitation enregistrés dans les mêmes conditions, des deux variétés (I) et (IV) de

FIG. 2. Spectres d'excitation et d'émission des deux variétés structurales de CeP_5O_{14} : (---) monoclinique, (---) triclinique.

 CeP_5O_{14} . Le Tableau IV rassemble certaines caractéristiques des bandes observées.

Les spectres d'excitation de ce composé présentent cinq bandes dans la région de l'ultraviolet. Les spectres d'émission se constituent de 2 bandes chevauchées et caractéristiques de la luminescence de Ce³⁺ observée habituellement dans la région du proche uv. les bandes d'excitation et d'émission observées correspondent à des transitions dipolaires électriques $5d \leftrightarrow 4f$ qu'on suppose se passer, comme c'est le cas souvent (13), entre l'état le plus bas du

TABLEAU III

Principales caractéristiques cristallographiques des quatre variétés cristallines d'ultraphosphates $LnP_{5}O_{14}$

Туре	Composé	Système	G. Espace	Paramètres de maille					
				a (Å) α°	b (Å) β°	c (Å) γ°	z	V (Å ³)	Densité D _x (g/cm ³)
I	CeP ₅ O ₁₄	Monoclinique	P2 ₁ /c	13.124(3)	9.131(5) 90.28(4)	8.761(5)	4	1049.86	3.29
Ш	DyP5O14	Monoclinique	C2/c	12.848(8)	12.832(4) 91.63(3)	12.447(4)	8	2003.35	3.59
ш	ErP ₅ O ₁₄	Orthorhom.	Pcmn	8.898(6)	12.701(7)	8.702(3)	4	983.44	3.69
IV	CeP ₅ O ₁₄	Triclinique	P 1	9.227(5) 110.27(1)	8.890(5) 102.75(1)	7.219(4) 82.13(1)	2	538.66	3,20

CARACTÉRISTIQUES SPECTROSCOPIQUES DES BANDES D'EXCITATION ET D'ÉMISSION DES DEUX FORMES DE CeP₅O₁₄

Туре	Composé	Bandes d'excitation		Bandes d'émission		Ecart entre les	
		Nombre	Position (Å)	Nombre	Position (Å)	2 pics d'émission (cm ⁻¹)	Décalage de Stokes (cm ⁻¹)
I	CeP5O14 Monoclinique	5	2040, 2215 2450, 2900 3040	2	3160, 3320	1526	1249
IV	CeP ₅ P ₁₄ Triclinique	5	2038, 2200 2400, 2840 3000	2	3065, 3255	1619	707

niveau 5*d* et les deux multiplets ${}^{2}F_{7/2}$ et ${}^{2}F_{5/2}$ du niveau fondamental 4*f*. L'émission lumineuse de Ce³⁺ dans cet ultraphosphate présente deux durées de vie nettement distinctes, τ_1 et τ_2 :

CeP₅O₁₄ (**I**): $\tau_1 = 15$ nsec et $\tau_2 = 44$ nsec

CeP₅O₁₄ (IV): $\tau_1 = 14$ nsec et $\tau_2 = 60$ nsec

L'une d'elles, τ_1 , est beaucoup plus courte que celles connues à présent pour le cérium trivalent dans d'autres matrices (14). Blanzat et coll. (7) expliquent l'existence de deux durées de vie dans CeP₅O₁₄ (I) par l'apparition de macle résultant d'un changement d'axes cristallographiques lors de l'écrasement des cristaux. Pour la forme triclinique non centrosymétrique, CeP₅O₁₄ (IV), la non équivalence des deux sites de Ce³⁺ isolés et séparés de 6.288 Å (10) pourrait expliquer les deux durées de vie.

Les propriétés optiques des deux formes critallines de CeP₅O₁₄, semblent être comparables et sont telles qu'elles pourraient être exploitées efficacement pour l'indexation de faisceau dans la télévision en couleur (14) et pour la détection d'électrons dans les microscopes à balayage électronique (15).

En dehors du domaine d'optique, la nouvelle forme triclinique de CeP_5O_{14} , de structure non centrosymétrique, peut, à cause de la bonne qualité de ses cristaux et du fort signal de piézoélectricité observé, être valorisée dans d'autres applications récentes (filtres électroniques, mesure de pression d'explosions et de pression d'ondes sonores sous marines, etc.).

Références

- 1. M. BAGIEU-BEUCHER ET D. TRANQUI, Bull. Soc. Fr. Minéral. Cristallogr. 93, 505 (1970).
- D. TRANQUI, M. BAGIEU-BEUCHER, ET A. DURIF, Bull. Soc. Fr. Minéral. Cristallogr. 95, 437 (1972).
- 3. B. C. TOFIELD, H. P. WEBER, T. C. DAMEN, ET G. A. PASTEUR, *Mater. Res. Bull.* 9, 435 (1974).
- H. G. DANIELMYER, J. P. JESER, E. SCHONHERR, ET W. STETTER, J. Cryst. Growth 22, 298 (1974).
- D. C. MULLER, L. K. SHIECK, ET C. D. BRANDLE, J. Cryst. Growth 23, 313 (1974).
- H. P. WEBER, P. F. LIAO, B. C. TOFIELD, ET P. M. BRIDENBAUGH, Appl. Phys. Lett. 26, 692 (1975).
- 7. B. BLANZAT, J. P. DENIS, C. PANNEL, ET C. BARTHOU, *Mater. Res. Bull.* **12**, 455 (1977).
- 8. M. BAGIEU-BEUCHER, "Colloque International sur les terres rares," Paris (1969).
- 9. H.-Y. P. Hong, Acta. Crystallogr. Sect. B 30, 468 (1974).
- M. RZAIGUI, N. KBIR ARIGUIB, M. T. AVERBUCH, ET A. DURIF, J. Solid State Chem. 52, 61 (1984).
- H.-Y. P. HONG ET J. W. PIERCE, Mater. Res. Bull. 9, 179 (1974).
- 12. D. BIMBERG, D. J. ROBBINS, D. R. WICHT, ET J. P. JESSER, Appl. Phys. Lett. 27, 67 (1975).
- 13. G. BLASSE ET A. BRILL, J. Chem. Phys. 47, 5139 (1967).
- 14. A. BRIL, G. BLASSE, A. H. GOMES DE MESQUITA, ET J. A. DE PROTER, *Philips Tech. Rev.* 32, 125 (1971).
- J. B. PAWLEY, "Proceeding, 7th Annual Scanning Electron Microscopy Symposium," 11 Tri, Chicago (1974).